Back propagation through adjoints for the identification of nonlinear dynamic systems using recurrent neural models

نویسندگان

  • B. Srinivasan
  • U. R. Prasad
  • N. J. Rao
چکیده

In this paper, back propagation is reinvestigated for an efficient evaluation of the gradient in arbitrary interconnections of recurrent subsystems. It is shown that the error has to be back-propagated through the adjoint model of the system and that the gradient can only be obtained after a delay. A faster version, accelerated back propagation, that eliminates this delay, is also developed. Various schemes including the sensitivity method are studied to update the weights of the network using these gradients. Motivated by the Lyapunov approach and the adjoint model, the predictive back propagation and its variant, targeted back propagation, are proposed. A further refinement, predictive back propagation with filtering is then developed, where the states of the model are also updated. The convergence of this scheme is assured. It is shown that it is sufficient to back propagate as many time steps as the order of the system for convergence. As a preamble, convergence of online batch and sample-wise updates in feedforward models is analyzed using the Lyapunov approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model

Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...

متن کامل

Adaptive control of discrete-time nonlinear systems using recurrent neural networks - Control Theory and Applications, IEE Proceedings-

A learning and adaptive control scheme for a general class of unknown MIMO discretetime nonlinear systems using multilayered recurrent neural networks (MRNNs) is presented. A novel MRNN structure is proposed to approximate the unknown nonlinear input-output relationship, using a dynamic back propagation (DBP) learning algorithm. Based on the dynamic neural model, an extension of the concept of ...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Identification and Adaptive Control of Dynamic Nonlinear Systems Using Sigmoid Diagonal Recurrent Neural Network

The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 1994